63 research outputs found

    ALF - A Language for WCET Flow Analysis

    Get PDF
    Static Worst-Case Execution Time (WCET) analysis derives upper bounds for the execution times of programs. Such bounds are crucial when designing and verifying real-time systems. A key component in static WCET analysis is the flow analysis, which derives bounds on the number of times different code entities can be executed. Examples of flow information derived by a flow analysis are loop bounds and infeasible paths. Flow analysis can be performed on source code, intermediate code, or binary code: for the latter, there is a proliferation of instruction sets. Thus, flow analysis must deal with many code formats. However, the basic flow analysis techniques are more or less the same regardless of the code format. Thus, an interesting option is to define a common code format for flow analysis, which also allows for easy translation from the other formats. Flow analyses for this common format will then be portable, in principle supporting all types of code formats which can be translated to this format. Further, a common format simplifies the development of flow analyses, since only one specific code format needs to be targeted. This paper presents such a common code format, the ALF language (ARTIST2 Language for WCET Flow Analysis)

    Loop Bound Analysis based on a Combination of Program Slicing, Abstract Interpretation, and Invariant Analysis

    Get PDF
    Static Worst-Case Execution Time (WCET) analysis is a technique to derive upper bounds for the execution times of programs. Such bounds are crucial when designing and verifying real-time systems. A key component for static derivation of precise WCET estimates is upper bounds on the number of times different loops can be iterated. In this paper we present an approach for deriving upper loop bounds based on a combination of standard program analysis techniques. The idea is to bound the number of different states in the loop which can influence the exit conditions. Given that the loop terminates, this number provides an upper loop bound. An algorithm based on the approach has been implemented in our WCET analysis tool SWEET. We evaluate the algorithm on a number of standard WCET benchmarks, giving evidence that it is capable to derive valid bounds for many types of loops

    Process intensification in mechanical pulping : Reduced process complexity and improved energy efficiency

    No full text
    This work shows that, for newsprint quality grades, the production processes for mechanical pulp can be simplified, and the specific electrical energy demand can be reduced with around 600 kWh/ton (30%). The purpose of the work is to demonstrate how the production cost for mechanical pulps can be decreased through increased energy efficiency and reduced number of unit operations. The idea was to improve the main line refining conditions so that no additional fibre development or shive reduction is needed and thereby, the normal screening and rejects treatment system could be omitted. Mechanical pulp is used to produce a variety of products, where the two largest categories are printing papers and paperboard for packaging. The pulp is mainly produced by the breakdown of wood chips between rotating metal discs in machines called refiners with the product and process generally referred to as thermomechanical pulp(ing) (TMP). The refiner process requires high specific electrical energy to separate and develop the fibres to a pulp intended for the production of printing papers. Today, many processes need over 2000 kWh/ton of refining energy plus 200-300 kWh/ton of auxiliary energy (to drive pumps, agitators, screw conveyors, screens, presses, etc.). During the last two decades of the 20th century, the chemical processing industry underwent a transformation. The process development changed from being unit operation focused to function focused. The result is more compact processes with less equipment, higher yield and lower energy demand. When the development is made in an innovative way with such large effects on process performance, it is referred to as process intensification. My work is inspired by the concepts of process intensification, especially the striving for more compact processes with higher efficiency.  This work is focused on mechanical pulp, intended for the manufacture of printing paper, produced in refiners with Norway spruce (Picea abies) as raw material. However, this approach could also be applied to mechanical pulp production in integrated paperboard mills and also using other raw materials e.g., pines or hardwoods. The investigated pulps and processes in this work are mainly intended for uncoated paper grades (newsprint, improved newsprint and book paper) printed by the offset printing process. In all studies, the pulps have been produced with full scale mill equipment and evaluated using laboratory measurements. However, in two studies, the produced pulps were evaluated on paper machines and at printing houses. A large number of process concepts have been evaluated in which different approaches have been used to reduce the specific energy and, in some cases, improve pulp quality. The approaches include: 1.     Impressafiner chip pretreatment  2.     Primary high consistency (HC) refiner type (DD, RTS, CD, SD) 3.     Addition of low doses of sodium sulphite  4.     Increased refining temperature (housing pressure) 5.     Refiner segments and centre plate design 6.     Increased production rate 7.     Low consistency (LC) refining in different process positions and in combination with different HC refiner types The separate effects of all these techniques have not been evaluated systematically neither have potential synergistic effects of all possible combinations been investigated. Even though a large number of combinations of unit operations have been studied, the emphasis has been on trying to do as much fibre development as possible in a single HC refining stage. The mill trials with spruce as raw material have shown that a low shive content and appropriate fibre development can be attained in a process without separate treatment of long fibres. High intensity primary stage refining (RTS and DD) was necessary to reach a low shive content at a low specific refining energy (SRE), with DD refiners appearing to be the most suitable for simplified processes. DD and RTS refining produced pulps with fibres exhibiting a higher degree of external fibrillation and share of split fibres than SD refining. DD refining produced fibres with lower cell wall thickness and higher light scattering at given fibre length than RTS refining. The lowest specific refining energy was attained for one of the trials using the process, denoted as S:HT:DD-LC-LC, consisting of DD refining at increased production rate, 18 adt/h, increased housing pressure, 6.6 bar(g), and with 5 kg/adt sodium sulphite added to the chips immediately  before the refiner. After DD refining the pulp was refined in two LC refining stages. This process required only 1280 kWh/adt SRE to reach a tensile index of 52 Nm/g (Rapid-Köthen). This is 900 kWh/adt lower than the final pulp for newsprint based on SD HC refining, and over 500 kWh/adt lower than Scandinavian BAT processes (2014). Additionally, the auxiliary energy was around 150 kWh/adt lower for the processes without a conventional rejects treatment system. At 52 Nm/g tensile index, the light scattering coefficient was 2-3 m2/kg higher, and the length-weighted average fibre length was around 0.1 mm lower for this process than for SD TMP final pulp. The fibre bonding, indicated by density, tensile index and Z-strength of fibre fraction handsheets, was similar or higher for the S:HT:DD-LC-LC process than the reference SD TMP process with a rejects treatment system.  Other interesting process configurations, with somewhat lower efficiencies, included: 1.     Impressafiner pretreatment of the chips with sodium sulphite before DD refining, with or without subsequent LC refining. Chip pretreatment with the Impressafiner enabled operating the DD refiner at higher intensity (feeding segments and increased production rate) without significant loss of quality and LC refining enabled increased production rate which increased the overall efficiency. 2.     RTS-SD refining with sodium sulphite added before the second stage SD refiner referred to as RTS-S:SD. The pulp from the RTS-S:SD process had similar fibre length as the S:HT:DD-LC-LC process but lower light scattering coefficient. 3.     A single-stage DD refiner operating at 15.5 adt/h and 4 bar(g) housing pressure (no sodium sulphite addition), which produced pulp with lower fibre length but higher light scattering coefficient than the S:HT:DD-LC-LC process.  Two simplified processes were evaluated on paper machines and in printing houses. The first, denoted DD-LC-F, involved a combination of DD primary refining followed by LC refining and fractionation (screening). The screen rejects were mixed with the main line DD pulp before the LC refiner. The second process was the CPT:S-DD-LC process (№1 above). Good runnability was attained both on the paper machines and in the offset printing presses and the paper quality was similar to the reference paper. For printing paper applications, the proportion of fibre development in LC refining should preferably be relatively low, since it was shown that LC refiners have limited capacity to reduce fibre wall thickness and thereby develop light scattering and fibre fraction Z-strength. Explicit effects on the number of unit operations and production cost have not been evaluated in this work, but clearly both investment and variable costs as well as fixed costs can be reduced with a simplified process.Det hĂ€r arbetet visar att det Ă€r möjligt att kraftigt förenkla tillverknings-processen för mekanisk massa och samtidigt minska totala elenergibehovet med omkring 600 kWh/ton (30 %) jĂ€mfört med dagens bĂ€sta teknik. Syftet med detta arbete Ă€r att visa hur produktionskostnaden för mekanisk massa kan sĂ€nkas genom ökad energieffektivitet och minskat antal enhets-operationer. UtgĂ„ngspunkten var att det borde vara möjligt att förbĂ€ttra betingelserna vid högkoncentrations(HC)raffinering sĂ„ att det endast krĂ€vs ett HC steg och bara mindre efterföljande fiberutveckling. DĂ€rmed kan den specifika elenergin minskas avsevĂ€rt och det normala rejektbehandlings-systemet uteslutas. Mekanisk massa anvĂ€nds för att producera en mĂ€ngd olika produkter, dĂ€r de tvĂ„ största kategorierna Ă€r tryckpapper och kartong för förpackningar. Massan framstĂ€lls huvudsakligen genom att trĂ€flis mals mellan roterande metallskivor i maskiner som kallas raffinörer. Separationen och bearbet-ningen av fibrerna till en massa avsedd för produktion av tryckpapper krĂ€ver mycket elenergi. Idag anvĂ€nder mĂ„nga processer över 2000 kWh/ton elenergi för raffinering plus 200-300 kWh/ton elenergi för att driva övrig utrustning, t.ex. pumpar, omrörare, silar, skruvtransportörer, pressar, mm. Under slutet av 1900-talet genomgick den kemiska processindustrin en genomgripande omvandling. Processutvecklingen gick frĂ„n att vara fokuserad pĂ„ enhetsprocesser till att bli funktionsfokuserad. Resultatet Ă€r mer kompakta processer med mindre utrustning, högre utbyte och lĂ€gre energibehov. NĂ€r utvecklingen görs pĂ„ ett innovativt sĂ€tt med stor effekt pĂ„ processprestanda kallas det processintensifiering. Mitt arbete Ă€r inspirerat av metodiken inom processintensifiering, sĂ€rskilt strĂ€van efter mer kompakta processer med högre effektivitet. Arbetet Ă€r inriktat pĂ„ mekanisk massa avsedd för tillverkning av tryckpapper, som produceras i raffinörer med gran (Picea abies) som rĂ„vara. Metodiken kan dock med stor sannolikhet tillĂ€mpas för produktion av mekanisk massa i integrerade kartongbruk och Ă€ven för andra rĂ„varor, till exempel tall eller lövtrĂ€. De undersökta massaprocesserna i detta arbete Ă€r frĂ€mst avsedda för obestrukna papperskvaliteter (t.ex. tidningspapper, bokpapper och förbĂ€ttrat tidningspapper) tryckta i offset. I alla studier har massan producerats med stora raffinörer i pappersbruk och utvĂ€rderats med hjĂ€lp av laboratorie-mĂ€tningar. I tvĂ„ studier utvĂ€rderades dessutom den producerade massan pĂ„ pappersmaskin och i tryckeri. Ett stort antal processkoncept har utvĂ€rderats dĂ€r olika metoder har anvĂ€nts för att minska den specifika energin och förbĂ€ttra massakvaliteten: 1.     Flisförbehandling med Impressafiner  2.     Typ av HC primĂ€rraffinör (DD, RTS, CD, SD) 3.     Tillsats av natriumsulfit  4.     Ökad raffineringstemperatur (malhustryck) 5.     Raffinörsegmentdesign 6.     Ökad produktionstakt 7.     LĂ„gkoncentrations(LC)raffinering i olika positioner och tillsammans med olika primĂ€rraffinörer. De separata och eventuellt synergistiska effekterna av dessa tekniker har inte utvĂ€rderats systematiskt. Även om ett stort antal konfigurationer har studerats, har fokus legat pĂ„ att försöka göra sĂ„ mycket fiberutveckling som möjligt i ett enda HC-raffineringssteg. Fabriksförsöken har visat att lĂ„g spethalt och tillrĂ€cklig fiberutveckling kan uppnĂ„s i en process utan rejektraffineringssystem. HC-raffinering med hög intensitet (RTS och DD) var nödvĂ€ndigt för att uppnĂ„ en lĂ„g spethalt vid lĂ„g specifik energi, dĂ€r DD-raffinörer visade sig vara de mest lĂ€mpliga. DD och RTS raffinörerna producerade massa vars fibrer hade högre grad av extern fibrillering och mer sprickor i fibervĂ€ggen. DD raffinering resulterade i fibrer med tunnare cellvĂ€ggar och högre ljusspridning vid viss fiberlĂ€ngd jĂ€mfört med RTS raffinering. LĂ€gst specifik raffineringsenergi erhölls i ett av försöken med en process bestĂ„ende av DD raffinering vid hög temperatur och med tillsatts av 5 kg/ton natriumsulfit precis före raffinören. Raffinören kördes med hög produktions-takt (18 adt/h) och högt hustryck (6,6 bar(g)). DĂ€refter LC-raffinerades massan i tvĂ„ steg. Denna process, benĂ€mnd S:HT:DD-LC-LC, krĂ€vde endast 1280 kWh/adt i specifik raffineringsenergi till dragindex 52 Nm/g (Rapid-Köthen), vilket Ă€r 900 kWh/adt lĂ€gre Ă€n en process med SD-raffinering i tvĂ„ steg samt ett normalt rejektsystem och cirka 500 kWh/adt lĂ€gre Ă€n de bĂ€sta processerna i Skandinavien (2014). Dessutom var behovet av övrig elenergi (pumpar, silar, pressar, mm) cirka 150 kWh/adt lĂ€gre för en process utan rejektbearbetnings-system. Vid 52 Nm/g i dragindex var ljusspridningskoefficienten 2-3 m2/kg högre och lĂ€ngdviktade medelfiberlĂ€ngden cirka 0.1 mm lĂ€gre för den förenklade S:HT:DD-LC-LC processen jĂ€mfört med fĂ€rdigmassa frĂ„n SD TMP. Massan frĂ„n den förenklade processen hade bĂ€ttre eller lika bra fiberbindning, bedömd utifrĂ„n densitet, dragindex och Z-styrka pĂ„ fiber-fraktionsark, som en SD TMP process med sileri och rejektbearbetning. Ytterligare intressanta processer som dock hade nĂ„got lĂ€gre energi-effektivitet var: 1.     Flisförbehandling med Impressafiner och natriumsulfit följt av DD raffinering, med eller utan efterföljande LC raffinering. Flisför-behandlingen med Impressafiner möjliggjorde högre raffinerings-intensitet (Matande segment och hög produktion) och dĂ€rmed högre energieffektivitet utan att massakvaliteten blev sĂ€mre. LC raffinering i huvudlinjen möjliggjorde ökad produktionstakt vilket sammantaget ökade energieffektiviteten. 2.     TvĂ„stegsraffinering med RTS i första steget och SD raffinering i andra steget dĂ€r 5 kg/adt natriumsulfit tillsattes till massan före andrasteget. Denna process producerade massa med samma fiberlĂ€ngd som S:HT:DD-LC-LC processen, men med lĂ€gre ljusspridning. 3.     DD raffinering utan sulfit, men vid relativt hög produktion, 15.5 adt/h, och vid normalt hustryck, 4 bar. Detta Ă€r en mycket enkel process som dock resulterade i en massa med lĂ€gre fiberlĂ€ngd men högre ljusspridning Ă€n S:HT:DD-LC-LC processen.  TvĂ„ förenklade processer utan sileri och rejektbearbetning utvĂ€rderades pĂ„ pappersmaskiner och i tryckeri. Den första bestod av DD raffinering i första steget följt av LC raffinering och silning. Silrejektet blandades med DD massan före LC raffinören. Den andra processen inleddes med flisför-behandling med Impressafiner och natriumsulfit följt av DD raffinering och ett LC raffineringssteg. Massorna frĂ„n de tvĂ„ förenklade processerna uppvisade bra körbarhet pĂ„ pappersmaskinerna och i tryckerierna och gav liknande pappers-kvalitet som den normala massan, med undantag av nĂ„got lĂ€gre rivstyrka. Vid tillverkning av massa för tryckpapper Ă€r det fördelaktigt att kombinera LC raffinering med flisraffinering som ger hög ljusspridning, till exempel DD-raffinörer. Dessutom bör andelen av den totala bearbetningen vara relativt lĂ„g i LC raffineringen eftersom den har begrĂ€nsad förmĂ„ga att minska fibervĂ€ggs-tjockleken och dĂ€rigenom utveckla ljusspridning och fiberfraktionens bindningsförmĂ„ga (mĂ€tt som Z-styrka). Effekten pĂ„ antal enhetsoperationer och produktionskostnaden har inte utvĂ€rderats explicit i detta arbete, men det Ă€r uppenbart att bĂ„de investerings-kostnad samt rörlig och fast kostnad kan minskas med en förenklad process. 

    Process intensification in mechanical pulping : Reduced process complexity and improved energy efficiency

    No full text
    This work shows that, for newsprint quality grades, the production processes for mechanical pulp can be simplified, and the specific electrical energy demand can be reduced with around 600 kWh/ton (30%). The purpose of the work is to demonstrate how the production cost for mechanical pulps can be decreased through increased energy efficiency and reduced number of unit operations. The idea was to improve the main line refining conditions so that no additional fibre development or shive reduction is needed and thereby, the normal screening and rejects treatment system could be omitted. Mechanical pulp is used to produce a variety of products, where the two largest categories are printing papers and paperboard for packaging. The pulp is mainly produced by the breakdown of wood chips between rotating metal discs in machines called refiners with the product and process generally referred to as thermomechanical pulp(ing) (TMP). The refiner process requires high specific electrical energy to separate and develop the fibres to a pulp intended for the production of printing papers. Today, many processes need over 2000 kWh/ton of refining energy plus 200-300 kWh/ton of auxiliary energy (to drive pumps, agitators, screw conveyors, screens, presses, etc.). During the last two decades of the 20th century, the chemical processing industry underwent a transformation. The process development changed from being unit operation focused to function focused. The result is more compact processes with less equipment, higher yield and lower energy demand. When the development is made in an innovative way with such large effects on process performance, it is referred to as process intensification. My work is inspired by the concepts of process intensification, especially the striving for more compact processes with higher efficiency.  This work is focused on mechanical pulp, intended for the manufacture of printing paper, produced in refiners with Norway spruce (Picea abies) as raw material. However, this approach could also be applied to mechanical pulp production in integrated paperboard mills and also using other raw materials e.g., pines or hardwoods. The investigated pulps and processes in this work are mainly intended for uncoated paper grades (newsprint, improved newsprint and book paper) printed by the offset printing process. In all studies, the pulps have been produced with full scale mill equipment and evaluated using laboratory measurements. However, in two studies, the produced pulps were evaluated on paper machines and at printing houses. A large number of process concepts have been evaluated in which different approaches have been used to reduce the specific energy and, in some cases, improve pulp quality. The approaches include: 1.     Impressafiner chip pretreatment  2.     Primary high consistency (HC) refiner type (DD, RTS, CD, SD) 3.     Addition of low doses of sodium sulphite  4.     Increased refining temperature (housing pressure) 5.     Refiner segments and centre plate design 6.     Increased production rate 7.     Low consistency (LC) refining in different process positions and in combination with different HC refiner types The separate effects of all these techniques have not been evaluated systematically neither have potential synergistic effects of all possible combinations been investigated. Even though a large number of combinations of unit operations have been studied, the emphasis has been on trying to do as much fibre development as possible in a single HC refining stage. The mill trials with spruce as raw material have shown that a low shive content and appropriate fibre development can be attained in a process without separate treatment of long fibres. High intensity primary stage refining (RTS and DD) was necessary to reach a low shive content at a low specific refining energy (SRE), with DD refiners appearing to be the most suitable for simplified processes. DD and RTS refining produced pulps with fibres exhibiting a higher degree of external fibrillation and share of split fibres than SD refining. DD refining produced fibres with lower cell wall thickness and higher light scattering at given fibre length than RTS refining. The lowest specific refining energy was attained for one of the trials using the process, denoted as S:HT:DD-LC-LC, consisting of DD refining at increased production rate, 18 adt/h, increased housing pressure, 6.6 bar(g), and with 5 kg/adt sodium sulphite added to the chips immediately  before the refiner. After DD refining the pulp was refined in two LC refining stages. This process required only 1280 kWh/adt SRE to reach a tensile index of 52 Nm/g (Rapid-Köthen). This is 900 kWh/adt lower than the final pulp for newsprint based on SD HC refining, and over 500 kWh/adt lower than Scandinavian BAT processes (2014). Additionally, the auxiliary energy was around 150 kWh/adt lower for the processes without a conventional rejects treatment system. At 52 Nm/g tensile index, the light scattering coefficient was 2-3 m2/kg higher, and the length-weighted average fibre length was around 0.1 mm lower for this process than for SD TMP final pulp. The fibre bonding, indicated by density, tensile index and Z-strength of fibre fraction handsheets, was similar or higher for the S:HT:DD-LC-LC process than the reference SD TMP process with a rejects treatment system.  Other interesting process configurations, with somewhat lower efficiencies, included: 1.     Impressafiner pretreatment of the chips with sodium sulphite before DD refining, with or without subsequent LC refining. Chip pretreatment with the Impressafiner enabled operating the DD refiner at higher intensity (feeding segments and increased production rate) without significant loss of quality and LC refining enabled increased production rate which increased the overall efficiency. 2.     RTS-SD refining with sodium sulphite added before the second stage SD refiner referred to as RTS-S:SD. The pulp from the RTS-S:SD process had similar fibre length as the S:HT:DD-LC-LC process but lower light scattering coefficient. 3.     A single-stage DD refiner operating at 15.5 adt/h and 4 bar(g) housing pressure (no sodium sulphite addition), which produced pulp with lower fibre length but higher light scattering coefficient than the S:HT:DD-LC-LC process.  Two simplified processes were evaluated on paper machines and in printing houses. The first, denoted DD-LC-F, involved a combination of DD primary refining followed by LC refining and fractionation (screening). The screen rejects were mixed with the main line DD pulp before the LC refiner. The second process was the CPT:S-DD-LC process (№1 above). Good runnability was attained both on the paper machines and in the offset printing presses and the paper quality was similar to the reference paper. For printing paper applications, the proportion of fibre development in LC refining should preferably be relatively low, since it was shown that LC refiners have limited capacity to reduce fibre wall thickness and thereby develop light scattering and fibre fraction Z-strength. Explicit effects on the number of unit operations and production cost have not been evaluated in this work, but clearly both investment and variable costs as well as fixed costs can be reduced with a simplified process.Det hĂ€r arbetet visar att det Ă€r möjligt att kraftigt förenkla tillverknings-processen för mekanisk massa och samtidigt minska totala elenergibehovet med omkring 600 kWh/ton (30 %) jĂ€mfört med dagens bĂ€sta teknik. Syftet med detta arbete Ă€r att visa hur produktionskostnaden för mekanisk massa kan sĂ€nkas genom ökad energieffektivitet och minskat antal enhets-operationer. UtgĂ„ngspunkten var att det borde vara möjligt att förbĂ€ttra betingelserna vid högkoncentrations(HC)raffinering sĂ„ att det endast krĂ€vs ett HC steg och bara mindre efterföljande fiberutveckling. DĂ€rmed kan den specifika elenergin minskas avsevĂ€rt och det normala rejektbehandlings-systemet uteslutas. Mekanisk massa anvĂ€nds för att producera en mĂ€ngd olika produkter, dĂ€r de tvĂ„ största kategorierna Ă€r tryckpapper och kartong för förpackningar. Massan framstĂ€lls huvudsakligen genom att trĂ€flis mals mellan roterande metallskivor i maskiner som kallas raffinörer. Separationen och bearbet-ningen av fibrerna till en massa avsedd för produktion av tryckpapper krĂ€ver mycket elenergi. Idag anvĂ€nder mĂ„nga processer över 2000 kWh/ton elenergi för raffinering plus 200-300 kWh/ton elenergi för att driva övrig utrustning, t.ex. pumpar, omrörare, silar, skruvtransportörer, pressar, mm. Under slutet av 1900-talet genomgick den kemiska processindustrin en genomgripande omvandling. Processutvecklingen gick frĂ„n att vara fokuserad pĂ„ enhetsprocesser till att bli funktionsfokuserad. Resultatet Ă€r mer kompakta processer med mindre utrustning, högre utbyte och lĂ€gre energibehov. NĂ€r utvecklingen görs pĂ„ ett innovativt sĂ€tt med stor effekt pĂ„ processprestanda kallas det processintensifiering. Mitt arbete Ă€r inspirerat av metodiken inom processintensifiering, sĂ€rskilt strĂ€van efter mer kompakta processer med högre effektivitet. Arbetet Ă€r inriktat pĂ„ mekanisk massa avsedd för tillverkning av tryckpapper, som produceras i raffinörer med gran (Picea abies) som rĂ„vara. Metodiken kan dock med stor sannolikhet tillĂ€mpas för produktion av mekanisk massa i integrerade kartongbruk och Ă€ven för andra rĂ„varor, till exempel tall eller lövtrĂ€. De undersökta massaprocesserna i detta arbete Ă€r frĂ€mst avsedda för obestrukna papperskvaliteter (t.ex. tidningspapper, bokpapper och förbĂ€ttrat tidningspapper) tryckta i offset. I alla studier har massan producerats med stora raffinörer i pappersbruk och utvĂ€rderats med hjĂ€lp av laboratorie-mĂ€tningar. I tvĂ„ studier utvĂ€rderades dessutom den producerade massan pĂ„ pappersmaskin och i tryckeri. Ett stort antal processkoncept har utvĂ€rderats dĂ€r olika metoder har anvĂ€nts för att minska den specifika energin och förbĂ€ttra massakvaliteten: 1.     Flisförbehandling med Impressafiner  2.     Typ av HC primĂ€rraffinör (DD, RTS, CD, SD) 3.     Tillsats av natriumsulfit  4.     Ökad raffineringstemperatur (malhustryck) 5.     Raffinörsegmentdesign 6.     Ökad produktionstakt 7.     LĂ„gkoncentrations(LC)raffinering i olika positioner och tillsammans med olika primĂ€rraffinörer. De separata och eventuellt synergistiska effekterna av dessa tekniker har inte utvĂ€rderats systematiskt. Även om ett stort antal konfigurationer har studerats, har fokus legat pĂ„ att försöka göra sĂ„ mycket fiberutveckling som möjligt i ett enda HC-raffineringssteg. Fabriksförsöken har visat att lĂ„g spethalt och tillrĂ€cklig fiberutveckling kan uppnĂ„s i en process utan rejektraffineringssystem. HC-raffinering med hög intensitet (RTS och DD) var nödvĂ€ndigt för att uppnĂ„ en lĂ„g spethalt vid lĂ„g specifik energi, dĂ€r DD-raffinörer visade sig vara de mest lĂ€mpliga. DD och RTS raffinörerna producerade massa vars fibrer hade högre grad av extern fibrillering och mer sprickor i fibervĂ€ggen. DD raffinering resulterade i fibrer med tunnare cellvĂ€ggar och högre ljusspridning vid viss fiberlĂ€ngd jĂ€mfört med RTS raffinering. LĂ€gst specifik raffineringsenergi erhölls i ett av försöken med en process bestĂ„ende av DD raffinering vid hög temperatur och med tillsatts av 5 kg/ton natriumsulfit precis före raffinören. Raffinören kördes med hög produktions-takt (18 adt/h) och högt hustryck (6,6 bar(g)). DĂ€refter LC-raffinerades massan i tvĂ„ steg. Denna process, benĂ€mnd S:HT:DD-LC-LC, krĂ€vde endast 1280 kWh/adt i specifik raffineringsenergi till dragindex 52 Nm/g (Rapid-Köthen), vilket Ă€r 900 kWh/adt lĂ€gre Ă€n en process med SD-raffinering i tvĂ„ steg samt ett normalt rejektsystem och cirka 500 kWh/adt lĂ€gre Ă€n de bĂ€sta processerna i Skandinavien (2014). Dessutom var behovet av övrig elenergi (pumpar, silar, pressar, mm) cirka 150 kWh/adt lĂ€gre för en process utan rejektbearbetnings-system. Vid 52 Nm/g i dragindex var ljusspridningskoefficienten 2-3 m2/kg högre och lĂ€ngdviktade medelfiberlĂ€ngden cirka 0.1 mm lĂ€gre för den förenklade S:HT:DD-LC-LC processen jĂ€mfört med fĂ€rdigmassa frĂ„n SD TMP. Massan frĂ„n den förenklade processen hade bĂ€ttre eller lika bra fiberbindning, bedömd utifrĂ„n densitet, dragindex och Z-styrka pĂ„ fiber-fraktionsark, som en SD TMP process med sileri och rejektbearbetning. Ytterligare intressanta processer som dock hade nĂ„got lĂ€gre energi-effektivitet var: 1.     Flisförbehandling med Impressafiner och natriumsulfit följt av DD raffinering, med eller utan efterföljande LC raffinering. Flisför-behandlingen med Impressafiner möjliggjorde högre raffinerings-intensitet (Matande segment och hög produktion) och dĂ€rmed högre energieffektivitet utan att massakvaliteten blev sĂ€mre. LC raffinering i huvudlinjen möjliggjorde ökad produktionstakt vilket sammantaget ökade energieffektiviteten. 2.     TvĂ„stegsraffinering med RTS i första steget och SD raffinering i andra steget dĂ€r 5 kg/adt natriumsulfit tillsattes till massan före andrasteget. Denna process producerade massa med samma fiberlĂ€ngd som S:HT:DD-LC-LC processen, men med lĂ€gre ljusspridning. 3.     DD raffinering utan sulfit, men vid relativt hög produktion, 15.5 adt/h, och vid normalt hustryck, 4 bar. Detta Ă€r en mycket enkel process som dock resulterade i en massa med lĂ€gre fiberlĂ€ngd men högre ljusspridning Ă€n S:HT:DD-LC-LC processen.  TvĂ„ förenklade processer utan sileri och rejektbearbetning utvĂ€rderades pĂ„ pappersmaskiner och i tryckeri. Den första bestod av DD raffinering i första steget följt av LC raffinering och silning. Silrejektet blandades med DD massan före LC raffinören. Den andra processen inleddes med flisför-behandling med Impressafiner och natriumsulfit följt av DD raffinering och ett LC raffineringssteg. Massorna frĂ„n de tvĂ„ förenklade processerna uppvisade bra körbarhet pĂ„ pappersmaskinerna och i tryckerierna och gav liknande pappers-kvalitet som den normala massan, med undantag av nĂ„got lĂ€gre rivstyrka. Vid tillverkning av massa för tryckpapper Ă€r det fördelaktigt att kombinera LC raffinering med flisraffinering som ger hög ljusspridning, till exempel DD-raffinörer. Dessutom bör andelen av den totala bearbetningen vara relativt lĂ„g i LC raffineringen eftersom den har begrĂ€nsad förmĂ„ga att minska fibervĂ€ggs-tjockleken och dĂ€rigenom utveckla ljusspridning och fiberfraktionens bindningsförmĂ„ga (mĂ€tt som Z-styrka). Effekten pĂ„ antal enhetsoperationer och produktionskostnaden har inte utvĂ€rderats explicit i detta arbete, men det Ă€r uppenbart att bĂ„de investerings-kostnad samt rörlig och fast kostnad kan minskas med en förenklad process. 

    Inspection of Industrial Code for Syntactical Loop Analysis

    No full text
    Flow analysis can be used in WCET analysis to, e.g., determine loop bounds and infeasible paths. Such information can be used by low level analysis and for actual WCET calculation. An e#cient flow analysis method is syntactical analysis. This method identifies certain predefined syntactical constructs. It is not reasonable to believe that we will be able to use syntactical analysis to identify all conceivable constructs. Therefore we need to learn which to prioritize. This pape

    Improvements Of The Flow Analysis in WCET Tools

    No full text
    The worst case execution times, the WCET, are often essential to know for tasks that have to fulfill deadlines. Such tasks can often be found in real time systems. In order to calculate the WCET, flow constraints, like maximum iterations of loops, needs to be known. Entering all such flow constraints to a WCET tool require a lot of work for the user to be done. Therefore methods for achieving flow constraints automatically are important. However, most of today 's WCET tools require manual annotations of loops for real sized programs. One of the reasons is that the most powerful analysis methods are too costly in terms of computation power. This pape

    The manufacture and wear of rails.

    No full text
    "Excerpt Minutes of proceedings of the Institution of civil engineers. vol. XXVII. Session 1867-8."Mode of access: Internet

    Effect of flow recirculation on pulp quality and energy efficiency in low consistency refining of mechanical pulp

    No full text
    The effect of pulp flow recirculation on energy efficiency and pulp properties development in low consistency refining of TMP has been studied. Trials were made with TwinFlo 58 refiners in two mills in Sweden. The refiners were operated at constant specific refining energy but different flow conditions. No effect of recirculation was seen on refining energy efficiency, pulp quality or fibre wall delamination/internal fibrillation. At high degree of recirculation though, a somewhat larger fibre length reduction was seen. This means that a large degree of recirculation can be used to attain a high specific energy in one stage low consistency refining, without significant negative effects on fibre properties. If a high specific energy input is desirable, it is more cost effective to install one large refiner with recirculation compared to several small without recirculation in series. When recirculation was increased by means of increased flow through the refiner, the outlet pressure dropped. The lower pressure drop over the refiner probably decreased the internal recirculation between rotor and stator, which could explain the observation that there was little effect on fibre development by recirculation. This means that at certain conditions the distribution in fibre treatment might not increase so much when the outer recirculation is increased, since the internal recirculation might be reduced simultaneously

    Effect of flow recirculation on pulp quality and energy efficiency in low consistency refining of mechanical pulp

    No full text
    The effect of pulp flow recirculation on energy efficiency and pulp properties development in low consistency refining of TMP has been studied. Trials were made with TwinFlo 58 refiners in two mills in Sweden. The refiners were operated at constant specific refining energy but different flow conditions. No effect of recirculation was seen on refining energy efficiency, pulp quality or fibre wall delamination/internal fibrillation. At high degree of recirculation though, a somewhat larger fibre length reduction was seen. This means that a large degree of recirculation can be used to attain a high specific energy in one stage low consistency refining, without significant negative effects on fibre properties. If a high specific energy input is desirable, it is more cost effective to install one large refiner with recirculation compared to several small without recirculation in series. When recirculation was increased by means of increased flow through the refiner, the outlet pressure dropped. The lower pressure drop over the refiner probably decreased the internal recirculation between rotor and stator, which could explain the observation that there was little effect on fibre development by recirculation. This means that at certain conditions the distribution in fibre treatment might not increase so much when the outer recirculation is increased, since the internal recirculation might be reduced simultaneously
    • 

    corecore